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a b s t r a c t

Air pollution impact assessment is a major objective for various community councils in large cities, which
have lately redirected their attention towards using more low-cost sensing units supported by citizen
involvement. However, there is a lack of research studies investigating real-time mobile air-quality
measurement through smart sensing units and even more of any data-driven modelling techniques
that could be deployed to predict air quality accurately from the generated data-sets. This paper ad-
dresses these challenges by: a) proposing a comparative and detailed investigation of various air quality
monitoring devices (both fixed and mobile), tested through field measurements and citizen sensing in an
eco-neighbourhood from Lorraine, France, and by b) proposing a machine learning approach to evaluate
the accuracy and potential of such mobile generated data for air quality prediction. The air quality
evaluation consists of three experimenting protocols: a) first, we installed fixed passive tubes for
monitoring the nitrogen dioxide concentrations placed in strategic locations highly affected by traffic
circulation in an eco-neighbourhood, b) second, we monitored the nitrogen dioxide registered by citizens
using smart and mobile pollution units carried at breathing level; results revealed that mobile-captured
concentrations were 3e5 times higher than the ones registered by passive-static monitoring tubes and c)
third, we compared different mobile pollution stations working simultaneously, which revealed
noticeable differences in terms of result variability and sensitivity. Finally, we applied a machine learning
modelling by using decision trees and neural networks on the mobile-generated data and show that
humidity and noise are the most important factors influencing the prediction of nitrogen dioxide con-
centrations of mobile stations.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Addressing air pollution problems in growing urban cities has
become a major problem due to ever increasing traffic in dense
populated urban areas, extended industrialisation, high energy
consumption, insufficient resources for monitoring and various
issues in defining adapted policies (Krupnick, 2008; Kumar et al.,
2013). The challenge of managing air pollution becomes more
difficult due to its dangerous effects on public health and the
multitude of air pollution triggering factors. As a consequence,
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u (A.S. Mih�aiţ�a).
various studies in recent years have been concentrating on evalu-
ating the impact of bad air quality on citizens, bymoving away from
traditional monitoring stations which are normally placed in high-
altitude locations across cities, towards outdoor and easy-
deployable air quality monitoring units, such as mobile sensors
installed on cars, bikes or even carried by hand during daily trav-
elling. This new type of collective approach for monitoring air
quality brings numerous advantages in terms of real-time pollution
measurement and hot-spot identification, but also comes with
various challenges due to the amount of data generated and its
accuracy. Therefore, there is a true challenge of not only switching
towards a mobile air monitoring paradigm (and choosing the best
adapted sensing units) but also in modelling efficiently the data
generated by all these mobile sensing units. Data-driven modelling
is an efficient way of extracting valuable information from
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generated data-sets, but is less effective when the data is sparse,
incomplete or contains many inaccuracies.

There is currently a lack of research studies integrating both
real-time air quality measurements through efficient mobile
sensing units and afferent data-driven modelling. Appendix A
presents a comparative state-of-art table in which we have gath-
ered recent studies adopting new sensing technology available for
outdoor air quality monitoring and/or efficient methods for data-
driven air quality prediction. The findings have been analysed
based on: a) the sensing technology which was used, b) whether
the pollution stations weremobile or not, c) whether the units have
been used near breathing level (close to human level), d) the time
period of the experimentation and most importantly, e) the data
analysis procedure which has been applied in order to obtain ac-
curate predictions or meaningful insights. Our initial observation
revealed that majority of studies have been using outdoor air
quality sensors, but only half of themwere used in a mobile setting,
andwere either fixed, attached to street lamps or insidemonitoring
boxes. For example (Castell et al., 2018), installed 17 nodes moni-
toring NO2 in kindergartens in Oslo at heights of 2.5e3m altitude
(Ercilla-Montserrat et al., 2018), installed outdoors sensors on
rooftops of greenhouses or urban houses for detecting heavy
mental contaminations due to atmospheric pollution (Heimann
et al., 2015), used 32 low-cost electrochemical sensor nodes in
and around the city of Cambridge, UK, to extract underlying
pollution levels (baselines) from air measurements, while (Popoola
et al., 2018) used 17 low cost portable air quality devices which
were installed at the London Heathrow airport in UK on lampposts
at 3-m hight altitude.

While outdoor fixed monitoring can provide a better informa-
tion about the air quality, their high level of installation (often
around 3m altitude) does not reflect a true impact of the pollution
at human level. More recent studies have started to explore not
only fixed outdoors sensing units, but also mobile sensors which
can be carried by hand, installed on cars/etc. For example, a recent
study published in (SM et al., 2019) used a smart personal air
quality system carried by pedestrians walking on predefined paths
or by bus in different locations in India; the analysis revealed non-
linear relations between the gaseous pollutant concentrations
versus the resistance offered by different sensors; there wasn't
however any data-drivenmodelling or predictions of the pollutants
being measured. Similar direction was taken by (Minet et al., 2017)
which used portable sensors for measuring NO2 concentrations in
Montreal carried by pedestrians walking or biking; the authors
applied statistical and land-use regressions for data modelling
which revealed sensitivity to the number of road segments and the
number of visits per segment. Other studies presented in (Suriano
et al., 2015) and (Zappi et al., 2012) deployed similar mobile sensors
near to the breathing level, but there is no data-driven modelling
attached to the results, except from visual data representation.

Recent advancements in machine learning showcased the po-
wer of using such models for any type of investigation where large
volumes of data have been generated. For example, a recent study
published in (Zhou et al., 2019) presents an artificial intelligence
approach based on a Deep Multi-output LSTM (DM-LSTM) neural
network model for predicting the air quality in the city of Taipei,
Taiwan. The study is very promising but the data being used is
generated by five fixed air quality monitoring stations in the city;
these data-sets, once again, do not reflect pollution concentrations
felt at human levels. Similarly, other powerful data-drivenmethods
have been used for air quality prediction such as DEA (data envel-
opment analysis) in (Zhou et al., 2018), or Feed-Forward Neural
Network and Random Forests in Borrego et al. (2018). But once
again, the information being used comes from fixed data sources,
not mobile sensing units carried by citizens for daily travel.
In an attempt to address these issues and research gap, this
paper presents a research approach for: a) choosing the best mobile
sensing units for outdoors air quality monitoring in an urban
neighbourhood, b) constructing reliable experimenting protocols
for evaluating the accuracy of such units with regards to fixed air
pollution stations, and c) constructing a data-driven approach us-
ing decision trees and neural networks for predicting the air quality
from mobile-generated sensing data. We strongly believe that
building such a data-driven modelling over mobile-generated
pollution data would help to learn and detect patterns of air
monitoring.

The paper is organized as follows. Section 2 presents the chal-
lenges faced by air quality monitoring in an international context
and the need to use low-cost mobile pollution sensing units in an
opportunistic citizen sensing. Section 3 introduces the case study of
the Nancy Grand Cœur eco-neighbourhood and the air quality
evaluation methods currently deployed in the city. Section 3.1
presents the stationary and mobile smart sensing units chosen to
conduct the current study, followed by a description in Section 3.2
of three air quality experimenting protocols which we deployed in
the most congested intersections. This paper is a further extension
of our first two air pollution protocols published in (Mih�aiţ�a et al.,
2018), by adding a third experimenting protocol and a data-
driven prediction modelling on the mobile sensing generated
data. The results of the three protocols are provided in Section 4
and concentrate around nitrogen dioxide and noise level evalua-
tions, followed by conclusions and future perspectives of the cur-
rent work.

2. Challenges in air quality monitoring

2.1. International context

Currently air pollution is monitored at a regional level by net-
works of static and sparse stationary Air Quality Monitoring (AQM)
stations, equipped with instruments for measuring various pol-
lutants such as: carbon monoxide (CO), nitrogen oxides (NOx),
sulphur dioxide (SO2), ozone (O3) and particulate matter (PM). The
risk information is often provided as a concentration of pollutants
or as an index of air quality (AQI) at a scale which can be easily
interpreted by the public. These AQIs can vary in their approach for
determining pollutant concentrations, as they follow different
regional policies (Plaia and Ruggieri, 2011) which can differ from
one country to another. For example, Canada has adopted an Air
Quality Health Index on an 11-point scale obtained from a non-
linear combination of particulate matter 2.5 mm (PM2:5), nitrogen
dioxide (NO2) and ozone (O3) (Stieb et al., 2008). On the other hand,
in Europe all countries are required to comply with EU directives
such as the Council Directive 96/62/EC on ambient air quality
assessment and management, commonly referred as the Air
Quality Framework Directive. Therefore the hourly and daily AQIs
are calculated on a scale from 0 to 100 by taking into consideration
PM10, NO2, O3, and where accessible, PM2:5, SO2 and CO (van den
Elshout et al., 2012). The EU directives recommend as well to
install a specific number of monitoring stations for individual
pollutant monitoring, based on the number of inhabitants and the
geographic partitioning of that area/city (EU Air Quality Directive,
2008/50/EC).

Although they offer high-precision results, the AQM stations are
often high-priced and need a significant amount of resources to be
routinely maintained and calibrated (Chong and Kumar, 2003).
Often, the temporal and spatial resolution of a network of fixed
AQM stations is far too sparse to incorporate the contribution of
different sources of pollution without significant constraints and
assumptions. The AQM stations would offer a global insight over
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large urban areas but they can not identify pollution hotspots inside
the city centre or around large industrial areas for example. Often
there are no real-time pollutant concentration maps available at
high-resolution (<1m) for large urban areas because they require a
large amount of data, computing facilities and input details which
are not available for many cities (Kumar et al., 2015). These aspects
led to the emergent idea of using more fine-grained monitoring
units in an outdoor setting, which would come at a lower cost and
maintenance. The motivation and benefits of using such units are
described in the next section.

2.2. The need for low-cost sensing units

Recent improvement of low-cost sensor technology has lead to
the development of a multitude of robust micro-sensing units
(MSUs) with a lower power consumption which can be used for
detailed air quality surveillance. These MSUs can be used either as
individual nodes or in an interconnected distributed network, and
would collect high-resolution spatial an temporal data when being
mounted on cars, bicycles or carried daily by pedestrians. One of
the main advantages of using low-cost sensing units is that they
provide more input conditions, especially if they are used in sig-
nificant numbers for detecting pollution hotspots. Their real-time
information would allow a rapid assessment of the pollution
problem and would lead to more efficient prevention strategies.

Due to a higher granularity provided, easy to handle function-
alities and rapid access to real-time pollution concentrations,
various research programmes have started to test both fixed and
mobile monitoring sensors (Mead et al., 2013). As well, including
citizens in the testing and exploration of urban air pollution opens
new opportunities for direct environmental awareness, debate and
future prevention strategies. Some examples of such projects are:
Air Quality Egg (AQE, 2016), Citizen Sense (Gabrys, 2016) and the
Smart Citizen Kit (SCK, 2016), which offer a centralised collection of
data, processing and real-time map visualisation through on-line
platforms and mobile applications. These citizen sensing projects
intend to expand citizen engagement in environmental issues, and
help them making changes in their daily journey-to-work trips in
order to avoid polluted urban areas. Currently there are various
low-cost air quality sensors which are commercially available
(Alphasense, 2016) or prototype sensor networks (MIT, 2016). For a
detailed state of the art regarding low-cost pollution sensors the
user can refer to the works of (Kumar et al., 2015). For our current
study we have also conducted a state-of-art investigation on low-
cost sensing units which will be further discussed in Section 3.1.

While this radical change in the air monitoring mentality
promises a flexible pollution surveillance solution, the question
around the accuracy of the generated data still remains an open
research question. The main downfall of low-cost sensors remains
their relatively low accuracy compared to official fixed AQM sta-
tions or other benchmark devices (Williams et al., 2013). For
example (Moltchanov et al., 2015), has observed a sensor-specific
temporal variation of the calibration parameters, and proposed a
periodical calibration of wireless sensors based on the nearby AQM
stations which would capture the fine and dynamic spatial vari-
ability of pollutants at a high temporal resolution. Questions related
to the battery power of the sensors and the life-expectancy of low-
cost sensors can also be seen as a drawback for adopting MSUs, but
their flexibility and remote-control possibility for data transmission
and collection increased their popularity. Together with meteoro-
logical sensors for measuring humidity, temperature, wind speed
and direction, they can form the basis for assessing pollution levels
and can induce substantial behavioural changes at a larger scale
amongst citizens. But these small monitoring units need to be used
at a larger scale in order to provide a global and complete picture of
the urban air pollution; therefore the idea of citizens using them on
a daily basis brought a higher popularity to this modular and dy-
namic approach for air pollution monitoring.

2.3. Towards opportunistic citizen sensing

The idea of using low-cost sensing for monitoring air quality has
led to a shift in the air quality data collection, generating the notion
of opportunistic citizen sensing, which implies that data collected
for one specific purpose can be used for other purposes as well
(Campbell et al., 2008). Involving citizens in the data collection gave
birth to the notion of anthropocentric opportunistic sensing, in
which large volumes of sensing data are collected, stored and fused
for further analysis and interpretation (Kapadia et al., 2009). Using
data analytics for extracting meaningful insights from daily air
pollution and noise exposure will provide unparalleled feedback to
the citizens regarding their daily trips and route choice behaviour.
By following the opportunistic aspect, the air pollution analytics
can be coupled together with clinical research studies for analysing
correlations between citizen movement and biological exposure
(NIEHS, 2014). Emergency alerts could then be triggered when
unusual air quality levels are signalised in specific areas of the city
or when a significant number of citizens present clinical side-
effects of air pollution exposure.

Our current work is driven by the idea of deploying an oppor-
tunistic citizen sensing coupled with an intelligent data-driven
modelling in order to build future pollution pattern recognition
and real-time anomaly detection. This would lead to the creation of
a real-time situation awareness for pedestrian and travellers,
helping them to customize their journey in order to improve their
health condition. The air pollution data generated from suchmobile
and opportunistic sensing will be further integrated with existing
traffic simulation models and improve the air quality prediction.
The next section presents our case study and the steps we took for
building a real-life mobile air pollution monitoring together with
data-driven modelling techniques.

3. Case study

The concept of eco-neighbourhood has emerged from a need to
build an innovative place for technical, economic and social
experimentation. Their role is quite complex as they must meet
several principles of sustainable development (MCT, 2016): 1)
involve all the city actors, 2) contribute to improving the daily life
by developing a healthy and safe living environment for all resi-
dents, 3) participate in the economical and local dynamics, 4)
promote a responsible resource management and adaptation to the
climate change. The eco-neighbourhoods offer the opportunity to
experience and anticipate the evolution of cities by guiding the
decision makers. The latest changes in the development of digital
tools and design practices (collaborative approach, usage integra-
tion directly from the design phase, citizen involvement in exper-
imental smart city projects), offer new perspectives for quantifying
the impact of the urban changes (Dupont et al., 2015).

Motivation: With the urban project Nancy Grand Cœur (GN,
2012) the Grand Nancy Metropolis in France, wants to rehabili-
tate the 15-ha area around the historical train station including its
railway and industrial brown field. A visual representation of the
train station hosting almost 9 million passengers each year is pro-
vided in Fig. 1a).

This ecological urban project is intended to be delivered by
2025, and the objectives for this central area are manifold: new
fluid mobility, better traffic regulation, reconciliation between
historical and modern neighbourhoods of the city, improved air
quality, extended green spaces, reduced energy consumption,
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comfortable homes and offices. An important step to respond to
this wide variety of problems is to analyse the air quality inside the
neighbourhood, especially at a human level, when passing through
the most circulated intersections of the Nancy Grand Cœur (NGC)
neighbourhood: C129 and C201 (see selected area in sub-plots b)
and c) from Fig. 1)). Understanding how highly circulated streets
impact the citizens on their daily journey-to-work trips is a true
challenge which can give a clear insight on how the eco-
neighbourhood needs to be reconfigured in order to protect its
inhabitants.

Solution: The work presented in this paper is a continuation of
our previous studies (Mih�aiţ�a et al., 2016, 2014) in which we pro-
posed an integrated air pollution and traffic simulation model for
building a simplified NO2 estimation model which helped pre-
dicting and visualising various environmental changes inside the
NGC eco-neighbourhood. Our previous study has used reliable data
sets provided by the Air Quality Monitoring Stations (AQM)
belonging to the local air-quality management centre, as well as
meteorological data. While these data sets are of high accuracy,
they only represent global concentrations computed by the AQM
station installed at high elevation from the ground (more than 10m
altitude) in a single location in the city. The real and direct impact
that pollution can have at the human level could be completely
different than higher dispersed pollution concentrations. There-
fore, our major objective is to build a research monitoring frame-
work using mobile smart sensing units transmitting air quality
information in real-time, coupled with a prediction engine and
situation awareness for citizens travelling daily in NGC. Providing
health risk information caused by air pollution is an important step
for raising citizen awareness and triggering changes in their daily
travelling behaviour.

The NGC project has the initiative to change the structural
configuration of the C129 and C201 intersections represented in
Fig. 1c), in order to allow a higher inflow of vehicles to cross the
neighbourhood every day. A large amount of vehicles in densely
populated areas will contribute to an increasing deterioration of the
air quality due to higher motor vehicle emissions. In 2012, the U.S.
Environmental Protection Agency (US EPA) has shown that 61% of
the total emissions of carbon monoxide (CO) and 35% of total
emissions of nitrogen oxide were produced by highway vehicles
(US-EPA, 2016). The complexity of the air pollution lies in its extent
and the large amount of factors changing its behaviour, making it
even more difficult to implement measures for protecting the cit-
izens. According to the 2012 air quality assessment (MEDE, 2012),
air pollution is caused by various industrial, commercial, domestic,
agricultural activities, but the traffic congestion is the major cause.
As 56% of the nitrogen dioxide in the air is caused by road trans-
portation (MEDE, 2012), for this initial case study we mostly focus
on NO2 concentrations. The objectives of our study are manifold: 1)
measuring air quality at a granular level in the city by using smart
pollution sensors, 2) prepare the field for integrating citizens in a
daily and global air quality data collection, 3) provide insights by
comparing outputs of stationary and mobile smart pollution sen-
sors, 4) derive data-driven predictions by using latest generated
data from mobile units.
3.1. Choice of sensing units

In France, the State entrusts the monitoring of air quality to
twenty approved AASQA associations (1901 Act) led by the ATMO
Federation (ATMO, 2016). Air Lorraine (2018) is one of the selected
air monitoring associations which is responsible for continuously
monitoring the air quality inside NGC andwhich has been our main
reference source for testing the accuracy of the mobile sensor units
deployed for this study.

As we are currently interested in analysing more granular air
quality information, a series of mobile sensing units have been
considered; a selection of these MSUs is provided in Appendix B,
Table B.5. The choices have been selected after a thorough analysis
of existent sensing units on the market at the time of the current
project, their accuracy, the feasibility of being used outdoors on a
daily basis, their costs and daily maintenance. For this paper, we
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only present the results obtained when investigating three units
which are detailed in the following. Other comparative studies of
smart pollution units are currently under testing and evaluation.

In the following we give a brief discussion about the three MSUs
which have been chosen for our experimenting protocols, the
reason, scope as well as their advantages and disadvantages for the
current study.

1. Passive tubes (Fig. 2a)): The technique (passive sampling) is
based on the passive transfer of pollutants by simple molecular
diffusion of ambient air to an adsorbent which is specific to the
targeted pollutants. The sampling module is in the form of a
porous tube, called ”passive tube” which is filled with adsor-
bent. The passive tubes are fixed in a protection box attached to
a support near congested traffic areas. After the exposure time
has elapsed, the tubes are sent to the Air Lorraine laboratory for
analysis. The concentrations of pollutants obtained by this
technique are concentrations averaged over the entire sampling
period. This technique has been used for sampling of nitrogen
dioxide (NO2) and has the main advantage of being low cost and
not requiring electrical recharge. The passive tubes have been
successfully deployed in various project such as the (LigAir,
2009) project for characterizing ambient levels of formalde-
hyde around industrial sites, or for modelling air quality in the
eco-neighbourhood Danube from Strasbourg (ATMO-Alsace,
2012), which was highly impacted by intense circulated areas.
The main disadvantage of using the passive tubes is related to
the fact that the results are analysed at the end of the experi-
mentation period and cannot detect peaks of localized pollution
concentrations during congested traffic hours. These tubes have
been used for the implementation of the first experimenting
protocol, which is detailed in Section 3.2.1. Nevertheless, they
represent an accurate base for comparing NO2 concentrations
with official reported pollution levels from the AQM station
during our testing period.

2. Azimut Station (Fig. 2b)): is a product of Azimut Monitoring
(Azimut, 2017) which uses electrochemical gas sensors for
measuring the NO2 emissions. Through a portable emission
analyser it can provide continuous real-time monitoring of NO2,
O3, noise, temperature and humidity. The station can be
mounted on cars, bicycles and can be carried by hand while its
data is transmitted through GPRS, having a 48-h autonomy. The
main advantages of this mobile sensing unit relies in its easy
installation and utilisation, a two day autonomy and real-time
data visualisation. The station has been successfully used for
building the open data portal MyGreenServices by INRIA
(Trousse et al., 2014) which offers real-time visualisation of
environmental data collected by citizens, generates alert ser-
vices and has a forum for sharing ideas and best practices in
terms of eco-responsible behaviour. In an attempt to promote
citizen awareness and trigger changes in the daily travelling
behaviour of citizens, INRIA has provided for our project one
Azimut station for testing, evaluation and comparison. The data
analytics provided through the platform have been used for
carrying out the second and third experimenting protocols,
which are detailed in Sections 3.2.2-3.2.3.

3. Smart Citizen Kit (SCK)(Fig. 2c)): is a crowd-funded product
developed by Fab Lab Barcelona at the Institute for Advanced
Architecture of Catalonia (SCK, 2016). This low cost mobile
sensing unit can provide real-time data measuring for NO2 and
CO concentrations, noise, temperature, humidity and light. Its
solar-panel and low power consumption, together with an er-
gonomic design make it attractive for daily usage. The device
streams the data measured by its integrated sensors over Wi-Fi,
using the FCC-certified wireless module on the data-processing
board. Results can be visualised through the on-line interface or
through a dedicated mobile app. With disregard to is various
advantages, the SCK is only produced on order and needs initial
settings from the user. In Section 3.2.3 we present the results we
have obtained by comparing the NO2 concentrations provided
by the Smart Citizen Kit and the Azimut station.
3.2. Experimenting protocols

This section describes the three experimenting protocols we
have deployed during two weeks time period (29th of April 2015 to
13th of May 2015). The length of the experiments has been tied to
project constraints for council approval, unit installation, data
measuring and processing. For each experimenting protocol we
provide insights regarding the purpose, the materials which have
been used, the constrains as well as the data acquisition for
interpretation.

3.2.1. First experimenting protocol
The first experimenting protocol aimed at determining a reliable

data source for further comparison of NO2 concentration with the
regional AQM station which happens to be placed in the centre of
NGC. For this study, 10 passive tubes provided by Air Lorraine have
been installed at 3m altitude on street pillars inside two most
circulated intersections of NGC (C129, C201), by using protection
cases and fixing clamps.

The placement of the tubes has been chosen to be near some of
the most congested streets, as represented in Fig. 3. Seven tubes
have been used to actively monitor these streets (Fig. 3a)), two
tubes have been placed near the location of the regional AQM
station and one tube has been kept as a duplicate reference
(Fig. 3b)). While the tubes have been used successfully in other eco-
neighbourhoods as previously detailed in (ATMO-Alsace, 2012), the
placement of the two tubes near the AQM station has the role of
double testing and verifying their accuracy during the experiment.
In order for the measures to be accurate and non-saturated, certain
constraints had to be addressed; tubes needed to be located: a) far
from stopping areas such as traffic stops or parking slots in order to
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avoid over-saturation of the pollutant concentration, b) far away
from blooming trees or high-ventilation areas c) at 2e3m altitude
and d) far away from covering structures which would block air
circulation.

At the end of the experimentation period, the tubes have been
analysed by Air Lorraine and the results are presented in Section 4.1
of this article.
3.2.2. Second experimenting protocol
The second experimenting protocol used the Azimut mobile

station which was carried in hand (at a human level, around 1.5m
attitude) during the two weeks experimenting period by volun-
teers walking inside the NGC neighbourhood. In the first exper-
imenting protocol the tubes have been installed at 3-m altitude due
to installation constrains, a height where the pollutant concentra-
tions are starting to disperse in the air. Therefore, this installation
altitude is not favourable for a direct evaluation of the perceived air
pollution impact at a human level, which represents a major
challenge and objective of this second experimenting protocol. The
daily trajectory of the volunteers would pass near each of the 9
passive tube locations presented in the previous section, where the
subject would wait for 5min near each tube. The daily circuit is
represented in Fig. 4a) and b).

The advantage of using the Azimut station relies in its high
flexibility, mobility and real-time transmission of results through
the MyGreenServices platform represented in Fig. 5. The platform
offers centralised results, personalised filtering, instant evaluation
of concentrations based on European air quality monitoring in-
dexes, as well as predefined alerts for raising real-time situation
awareness. Having immediate access to results provides a higher
awareness regarding the exposure to pollutants, for both specialists
and citizens travelling in the neighbourhood on a daily basis. Using
the mobile Azimut station on this predefined trajectory allowed a
consistent check of data transmission and quality, which was then
compared and matched to the stationary units from the previous
experimenting protocol. Despite the above advantages, the main
limitations for applying this experimenting protocol were: a) the
daily recharge of the Azimut station in order to prevent a discon-
tinuity in the data collection and b) the lack of multiple Azimut
stations which would have been tested in parallel on the same
trajectory. The data profiling and results obtained during this pro-
tocol are further discussed in Section 4.2.
3.2.3. Third experimenting protocol
The third experimenting protocol used both the Azimut mobile

station and the Smart Citizen Kit, in order to compare the accuracy
and behaviour of both mobile sensing units in the same testing
environment. The main purpose of this experiment was to inves-
tigate the usage of various mobile smart sensing units which had to
monitor the same air pollutants. During 80 h (13th � 15th of May
2015), both units have been placed outside on an open private
balcony facing one of the most circulated streets in C129, near the
location of passive tube 5.

Themain constraint for this experiment was the impossibility to
use the SCK in the mobile circuit (previously presented in the
second protocol), mostly due to the lack of Wi-Fi availability for
transmitting the data to the online platformwhen walking in NGC.
The SCK needs local Wi-Fi configuration for data transmission
which was not available through mobile tethering, while local data
storage was not possible with the received unit; therefore, we have
configured the SCK for Wi-Fi usage on a private balcony near the
closest passive tube. The data collected from the Azimut station
followed the procedure explained in the previous protocol, while
SCK provided real-time access to the collected data trough the
Smart Citizen platform (SCK, 2016), as represented in Fig. 6. The
results and analysis of this third experimenting protocol are further
discussed in Section 4.3.
4. Data profiling and results

4.1. First protocol results

As previously mentioned in Section 3.2.1 the purpose of the first
experimentation protocol was to establish an accurate and reliable
source of information regarding the air pollution inside the eco-
neighbourhood around main circulated areas (hotspots). The NO2
levels collected from the passive tubes have been investigated in
the air quality laboratory of Air Lorraine (2018), and evaluated ac-
cording to the ATMO indexes defined nationally by the French
government: see decree on 22nd of July 2004 related to air quality
indices (MEDD, 2004).

The evaluation scale is provided in Table 1 and uses indexes
from 0 to 10 for different NO2 concentration levels depending on
their severity (0 and 10 standing for a very good, respectively very
bad air quality index). The results for each tube are provided in
Table 2 and are coloured accordingly to these standard indexes. We
make the observation that Tube 10 has been kept as a duplicate for



Fig. 4. Daily trajectory using Azimut Station in NGC.

Fig. 5. MyGreenServices platform for visualising data collected by the Azimut station.
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verification purposes, whereupon the low scored value. The results
have been obtained during a time period which registered a mean
temperature of 13:6+C and a mean pressure of 1013.0 hPA. The
investigation results indicate that overall the tubes have registered
very good NO2 concentrations corresponding to index 1 or 2 (ac-
cording to Table 1). Tube 7 presented higher NO2 levels which is
explained by its position near a narrow but highly circulated road in
the neighbourhood.
According toTable 2, Tubes 8 and 9 which have been placed near
the AQM fixed station of Air Lorraine (located near the train station)
presented an average NO2 level or 23:15ðmg=m3Þ. The official NO2
concentration registered by the AQM station during the same
period of time indicated a level of 24:11ðmg=m3Þwhich translates in
a 3:9% error between the tubes and the AQM station. The location of
these tubes near the AQM station (see Fig. 4b)) has been inten-
tionally chosen for re-verifying the accuracy of passive tubes



Fig. 6. Smartcitizen. me platform for visualising data collected by the Azimut station.

Table 1
ATMO French National Index scale for NO2. (Lorraine, 2018).

Table 2
results of the passive tubes investigation.
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against the official reported NO2 levels at the whole regional level.
Findings: The findings of the first protocol confirm a high ac-

curacy of the fixed tubes which have been later used for the com-
parison analysis with the smart mobile stations. This protocol was
the base set-up for comparing mobile sensing results and making
sure their accuracy is validated.
4.2. Second protocol results

4.2.1. findings
The second experimentation protocol aimed at investigating the

air pollution and noise levels as reported by the smart mobile unit
Azimut. As previously detailed in Section 3.2.2, the experiments
took place between the same time period when the fixed pollution
tubes have been tested. For easing the experimental result inter-
pretation, in this section we present the analysis results obtained
during the evening peak hour (6pm-7pm). Fig. 7 presents the NO2
concentration levels registered for every day of the study period
during PM traffic peak with the average values ranging from a
minimum of 41:48ðmg=m3Þ at 7pm up to a maximum of
91:3ðmg=m3Þ at 6:45pm. Fig. 7 contains as well markers on the X-
axis of the time period that corresponds to the waiting time near
each tube location along the trajectory shown in Fig. 4 (for example
between 6:00pm and 6:05pm the Azimut carers would be stopping
near Tube 2 in order to record the concentration in this hotspot of
the neighbourhood).

According to Fig. 7, the lowest pollution scores have been ob-
tained during Sunday 03/05/15 as traffic activity in the city centre
was low. The highest NO2 levels reached 152ðmg=m3Þ during
Monday 11/05/15 which corresponds to a “medium” towards
“poor” pollution level according to Table 1. This can be explained by
an increased traffic demand on Mondays when citizens returned to
work after long weekend (8/05/15 was public holiday). An impor-
tant observation is that the average peak of NO2 concentrations
over the whole study period has been registered between 6:45pm
and 6:50pm, which corresponds to the waiting time near Tube 7. A
possible explanation comes from the narrow street configuration
and dense traffic that circulates in this area compared to other lo-
cations which have a wider exposure to air flow and multiple cir-
culation lanes.

Once again, the finding confirms that pollution levels near Tube
7 (as registered using the mobile pollution sensor Azimut) are
higher than those of other tube locations. Overall, the mobile sta-
tion seems to register lower NO2 concentration levels towards 7pm,
at the location of Tube 8 and 9, which are placed near the AQM
station of Air Lorraine. The findings confirm a similar trend be-
tween the NO2 values registered around the tube locations by both
stationary and mobile sensors with differences which will be dis-
cussed in the following.



Fig. 7. Daily NO2 concentrations registered by Azimut mobile station.
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To summarise, the real-life mobile sensing we have deployed
revealed its high capability to detect correctly the hot-spots for NO2
concentrations under the influence of severe traffic congestion.
4.2.2. Weather impact on NO2 concentrations
An important aspect that we considered for this study is the

weather impact on the NO2 evolution. Our previous findings
(Mih�aiţ�a et al., 2016) revealed that temperature, wind and humidity
play a very important role in influencing the pollution dispersion or
accumulation in the city and that predicting the air pollution levels
is not only impacted by a specific day profile (day of the week/
weekend/public holiday) or mobility patterns (peak/non-peak
hours), but also by various exogenous factors which can highly
affect the pollutant evolution in time. In order to understand the
current emission levels, one needs to analyse not only the daily
traffic patterns, but also previous weather conditions that have led
to the current concentration levels. In the following we conduct a
comparative analysis of different day profiles, weather conditions
and traffic counts registered during the study period in order to
understand how these factors can influence air pollution moni-
toring at both human level and stationary monitoring stations
placed at higher heights.

Fig. 8 presents the NO2 evolution for Mondays, Tuesdays,
Thursdays and Fridays, while Table 3 summarises the Temper-
ature(+), Humidityð%Þ, Precipitationsðmm=hÞ and Windðkm=hÞ regis-
tered during the study period. The NO2 concentration levels for two
typical Mondays are shown in Fig. 8a) and although both days
presented an average of 550 cars per hour passing the predefined
trajectory shown in Fig. 4, one can easily observe that the NO2
concentration on 4=05=2015 was significantly lower than that of
11=05=2015. Although the weather parameters during these two
days are almost similar according to Table 3 (temperature was
around 22� 25+C, wind around 11� 13km=h), by analysing the
three previous days to our chosen dates, one can notice different
weather conditions: prior to 4=05=2015 the humidity was higher,
temperature lower and there was less sunshine, while prior to 11=
05=2015 there were lower precipitations, a higher temperature and
more sunshine. This aspect indicates that high humidity, low
temperature and high precipitations can reduce the NO2 accumu-
lation in the city. The finding is also supported by the comparison
between Thursdays as presented in Fig. 8c); similarly, the highest
NO2 levels were registered during 07=05=2015, a day with higher
temperature, lower humidity and lowwind levels, when compared
to 30=04=2015 which registered much lower temperatures and
higher precipitations.

A special case is the comparison between Tuesdays (see Fig. 8b)
when humidity and wind conditions were almost similar during
the observed time period; this translated in similar NO2 levels,
except from 6:00pm until 6:18pm on 12/05/2015 when the higher
temperature (24:6+C) registered at 6:00pm induced higher NO2
levels. After the temperature decreased to 21+C around 6:18pm, the
NO2 level presented similar evolutionary patterns as one week
before. The comparison for Friday is shown in Fig. 8d) and
strengthens even more our previous findings, with the observation
that the lower concentration levels registered on 01=05=2015were
also influenced by the reduced traffic flow as this daywas a national
public holiday. The public holiday on Friday 1=05=2015 has influ-
enced as well the NO2 levels on the next Saturday 2=05=2015 and
Sunday 3=05=2015, as represented in Fig. 9. The mean number of
cars during the chosen study period averaged around 234 cars,
which is almost half than during a normal week day. Moreover,
Fig. 9a) and b) indicate a clear difference between the average NO2
concentrations registered in a weekend preceded by public holiday
[44:68ðmg=m3Þ for Saturday 2=05=2015 and 38:09ðmg=m3Þ for
Sunday 3=05=2015] and the next regular weekend with no public
holiday [90:49ðmg=m3Þ for Saturday 9=05=2015 and 93:47ðmg=m3Þ
for Sunday 10=05=2015]. The difference is not only caused by the
increased number of cars during a regular weekend, but also by
higher temperatures and lower air humidity.

Findings: To resume, the weather impact investigation revealed



Fig. 8. Daily comparison of NO2 concentrations.
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a higher sensitivity of the mobile sensing units to external factors
such as temperature, wind, humidity and atmospheric pressure.
This could be caused by direct exposures of the units to pollution
concentrations close to ground levels, but also to the influence of
traffic congestion. The daily profiles of citizen trips coupled with
weather information across extended time periods can be used to
establish accurate daily patterns of pollution along specific urban
routes in the city.
4.2.3. Noise pollution from mobile sensing
Besides NO2 levels, the Azimut station continuously registered

noise levels at the human level while following the proposed daily
circuit. Fig. 10 presents the mean and daily noise evolution regis-
tered during the study period with the associated European noise
scale. The measurements indicate that noise levels ranged between
53.48 dB(A) and 89.76 dB(A), with an average reaching often
72.77 dB(A) which indicates a highly noisy/hazardous environ-
ment. In comparison to the NO2 levels which have a dispersed
behaviour and are harder to be analysed in time, noise levels seem
to have a homogeneous evolution and follow almost similar trends
from one day to another.

By undertaking a daily noise comparison similarly to the pre-
vious NO2 analysis, one can easily identify almost similar evolu-
tionary patterns of noise levels during a normal week day (as seen
in Fig. 11a) and b); lower noise levels were registered during public
holidays, when traffic is heavily reduced in the city centre (see
Fig. 11c)). Overall, the current analysis revealed unexpected high
noise levels inside the eco-neighbourhood NGC, which is the con-
trary objective of Grand Nancy Metropolis who wants to increase
the liveability for its citizens, not only by offering good public
transport services and multi-modal interconnection, but also good
levels of air quality, reduced traffic jams and implicitly, noise levels.

Findings: To resume, the second protocol revealed that:

� mobile sensing units are capable of accurately detecting hot-
spots of NO2 concentrations, especially under the influence of
traffic congestion,

� mobiles sensing units are highly sensitive to the weather con-
ditions but reflect an accurate impact of pollution at breathing
level,

� mobile generated data can be accurately used for building daily
patterns of pollution along specific urban routes; this could be
further expanded to any data-driven modelling which could
learn from historical patterns and generate situation awareness
alerts whenever a real-time pollution concentration falls out of
historical expected trends.

� noise can also be used as a data feature for any pollution pre-
diction modelling due to their high relevance towards increased
traffic congestion in affected areas.

4.3. Third protocol results

Adopting a smart mobile station for measuring the air quality at
the human level can bring numerous benefits and additional in-
sights to citizens, but one needs to verify the accuracy of the mobile
station for calibration and validation purposes. As previously
mentioned, the SCK was adopted not only for testing against fixed
pollution units or large AQMs, but also to make the comparison
between the robustness of various mobile devices for air quality
monitoring. Although the SCK provided a bigger autonomy due to
its integrated solar panel, the collected data couldn't be transmitted
in real-time towards the on-line platform unless there was a
continuous Wi-Fi availability in the area. The SCK used in this
experiment offered an 80-h continuous monitoring together with
the Azimut Station, while being placed outside a balcony near the
location of tube 5.

Fig.12a) presents the comparison between NO2 levels registered
by both Azimut and SCK; overall one could observe the higher
variability of the Azimut station compared to the SCK, but also a
long-term steadiness of results especially towards the end of the
experimentation protocol when the SCK station registered an un-
explained rise in NO2 levels. Fig. 12b) showcases the noise com-
parison between the two mobile devices, with a more steadier but
higher noise levels registered by SCK when compared to Azimut.
Although Azimut registered a lower noise range, one could observe
its sensitivity to short-term variations when compared to SCK,
which registered an overall noise value of 50 dBwith seldom higher



Table 3
Weather conditions during the study period.

Day T(+C ) Hð%Þ Prðmm=hÞ Wðkm=hÞ
6pm 7pm 6pm 7pm 6pm 7pm 6pm 7pm

29=04 9 8 80 82 0.7 0.68 10 9
30=04 10 9.8 85 86 0.8 0.6 11 9
01=05 9.8 8.5 90 92 0.8 0.8 13 13
02=05 13 12.8 89 90 0.2 0.2 7 9
03=05 18.6 17.6 81 88 0 3.5 11 9
04=05 22.1 21.2 62 67 0 0 11 7
05=05 20.5 20 46 46 0 0 20 24
06=05 17.1 16.1 40 44 0 0 24 22
07=05 17.4 16.9 41 43 0 0 9 7
08=05 20.0 18.4 46 60 0 0 15 17
09=05 19.9 19 43 46 0 0 19 19
10=05 21.6 20.9 49 51 0 0 7 11
11=05 25.8 25.1 43 48 0 0 13 11
12=05 24.6 21.8 60 63 0 0 26 24

Fig. 9. Weekend comparison of NO2 concentrations.
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peaks that have reached a maximum of 65 dB. Overall, these results
translate as medium to good noise levels when compared to
standard scales, but the lack of noise fluctuations in the SCK
behaviour on the long term can indicate less sensitivity to smaller
noise variations in the surrounding environment.

Findings: The main and surprising finding of the 3rd protocol
revealed that different mobile sensing units can report different
concentrations of the same pollutant at the same moment in time,
and can be very sensitive to different external factors. As previously
mentioned, the main limitation of this protocol was mainly related
to the impossibility of a long-term usage of the SCK in mobile
outdoor circuits as the one in Fig. 4. The complete different
behaviour of the two stations indicate a further need to conduct
long-term data collection, analysis and interpretation in order to
fully understand the cause in different behaviour and data vari-
ability. One would need to conduct several experimenting pro-
tocols, in different settings and on longer time periods before
adopting one mobile unit over the other for outdoor and mobile air
pollution monitoring.
4.4. Data driven models for air quality prediction

We have further performed a closer data-driven investigation
over the factors that could influence the NO2 concentration levels
registered by mobile pollution units and the accuracy of the
generated data sets for further air quality predictions. As Azimut
was the sensing unit which provided continuous data collection
(every minute) over the entire experimenting protocol, we have
used this data to build the following features (variables): latitude,
longitude, temperature, humidity and noise. We store these fea-
tures in a matrix Xt ¼ ½Xði; jÞ�j¼1::5

i¼1;::Np
and consider the corresponding

NO2 vector as Pt ¼ ½Ni�i¼1;::Np
, where Np is the total number of data

record transmitted by Azimut during the second experimenting
protocol which summed around 20160 records. We then consider
the regression problem of predicting Pt from Xt , so as to determine
the highly predictive features which influence the NO2 concentra-
tion levels.

The data has been separated into a training set comprised of 75%
of all records, a test data set of 15% and a validation data set of also
15%.We then fit a regressionmodel on the training set and evaluate
the model performance using the mean squared error (MSE). As a
baseline we use a trivial model which predicts the mean NO2
concentrations in the training set; any model that performs worse
then this is typically useless.

The first underlying model is a decision tree using the CART
algorithm. This intuitive model can fit the non-linearity in the data
well, as it involves making splits in the data on some simple
thresholds. Fig. 13 shows the output of a decision tree with 3 levels
of depth which indicates that the most predictive features are
noise, humidity and location. The MSE of this model is 303.32
which is almost a 50:6% improvement from the baseline MSE of
598.62. The leafs of the tree represent a hard prediction of the
target variable Pt (in our case NO2 concentrations), which is typi-
cally done by averaging the points that fall into a particular leaf
node. The models seems to treat separately the cases when the
registered noise is lower than 65dB or higher, but after a location
investigation in both cases, humidity seems to be the most pre-
dictive feature of the model.

Further on, we believe that data collected bymobile sensing unit
can be used learn patterns of air pollution evolution, especially
when being used in particular urban locations. When passing
through a polluted area, if the pattern analysis detects anomalies
and historical high pollution levels, the mobile unit could release
alarms to the user to avoid the specific area. In order for this to
happen, the data collected by the mobile unit needs to be accurate
enough and has to contain sufficient information that could be used
for predicting air pollution depending on location temperature,
humidity, etc.

We have further used the above divided datasets from the
Azimut mobile unit to train the second model: a neuronal network
which is generally good at fitting specific practical functions. The
neuronal network used for our predicting problem contains a
hidden layer of 10 neurons and was trained first by using a
Levenberg-Marquardt algorithm which typically requires more
memory but less computational time; training automatically stops
when the generalization stops improving, as indicated by an in-
crease in the mean square error of the validation samples. The
obtained MSE revolved around 150.59 which is a further 25%
improvement from the decision tree algorithm and the overall R2

value was 0.71. Despite fast running time (1 s) and 97 iterations, we
have found that by using a Bayesian regularisation algorithm on the
training set, the results improved significantly. Although the
Bayesian regularisation typically requires more time for training on
the dataset, it usually results in good generalisation for difficult,
small or noisy datasets. The training stops according to adaptive



Fig. 11. Daily comparison of noise levels registered by the Azimut station.

Fig. 10. Daily and mean noise levels registered by the Azimut mobile station.

A.S. Mih�aiţ�a et al. / Journal of Cleaner Production 221 (2019) 398e418 409
weight minimization (regularisation). The obtained MSE rounded
up to 126.09 which is a further 4:09% in the prediction accuracy.

Fig. 14 shows the R2 values obtained for all datasets: training,
testing and validation which reached an overall score of 0.81 when
using the Bayesian Regularisation. While there is still place for
improvement, the results are promising for further training on
larger datasets when available. This is the best results obtained on
the air pollution dataset generated by the Azimut which indicated
that with a confidence of 81% one could predict in the future the
NO2 concentrations when using a mobile sensing unit in outdoors
environment. We also make the observation that the current re-
sults apply to the specific mobile sensing unit and further tests and
analysis could be imagined for a better performance evaluation of
both air quality monitoring and prediction accuracy.

Findings: Machine learning modelling is an efficient tool for
predicting accurately the mobile air quality. Decision-trees and



Fig. 12. Noise and NO2 comparison between Azimut and SCK.
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neuronal network showed good capabilities for air quality predic-
tion which could be further improved if more data would be
available. A true challenge to extend this modelling would be to
build collective data-driven predictions and anomaly detection al-
gorithms for insuring a continuous real-time situation awareness.
4.5. Impact evaluation of fixed versus air mobile sensing

While the original purpose for this study was to propose a
mobile sensing investigation coupled with data-driven modelling
for air quality prediction, the biggest finding is mostly related to the
difference and high impact of pollution concentrations registered at
the human breathing level when compared to those reported by
official stationary monitoring units. Fig. 15 shows the summary of
mean NO2 levels registered during the study period by both the
Fig. 13. Decision Tree
Azimut station and the passive tubes (experiments 1 and 2).
Although the overall average concentration levels are in good
evaluation scales (less than 90ðmg=m3Þ, the difference between the
two experimentation protocols reveal significant differences be-
tween monitoring techniques and an alarming direct citizen
impact. From Fig. 15 one can identify that most of the pollution
levels registered by the mobile station carried at the human level
near the locations of the passive tubes are almost three times
higher than the stationary levels monitored at higher levels: tubes
8 and 9 registered almost 23:3ðmg=m3Þ from the passive tubes
(placed at 3m altitude) and validated by the AQM station (placed at
around 10m altitude) in comparison to 61:2ðmg=m3Þ recorded by
the Azimut station carried at human level (1.5m altitude) near
these tubes. The biggest difference between fixed and mobile air
pollution monitoring is showcased by the passive tube 4, which
recorded an NO2 concentration of 14:9ðmg=m3Þ in comparison to
74:17ðmg=m3Þ registered by the mobile station Azimut; this trans-
lated in a human-level pollution score which is almost 5 times
higher than official reported scores by the stationary monitoring
devices.

While various reasons and factors could be further taken into
consideration for explaining the significant difference between the
investigated emission levels, this finding brings a solid awareness
towards the real impact that air and noise pollution can have on
human health and the risk that citizens are facing whenwalking in
extremely crowded and congested areas in the city. It is also a proof
that mobile sensing units for air pollution monitoring are better at
quantifying the exact exposure to air pollutants and bring a solid
and real-time situation awareness.

5. Conclusions

This paper proposed a mobile air pollution monitoring frame-
work coupled together with a data-driven modelling approach for
predicting the air quality inside urban areas, at human breathing
level. Three experimenting protocols have been implemented by
using: a) fixed passive tubes for NO2 monitoring which have been
verified against a reliable AQM station (this represented the base-
line verification for the accuracy of any futuremobile sensing in this
area), b) smart and mobile sensors with real-time data trans-
mission and collection deployed through the use of citizens trav-
elling daily in the neighbourhood and c) a static monitoring
protocol for comparing the performance of two different mobile
sensing units. The proposed experimentation protocols not only
outcome for Pt.



Fig. 14. Results for Neuronal Network training using Bayesian Inference.

Fig. 15. NO2 pollution level registered by passive tubes places at 3m altitude versus
the mobile station Azimuth carried at the human level.
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showed a significant higher impact of NO2 concentrations when
using smart sensors carried at human level and walking inside
highly circulated urban areas, but also poor noise levels registered
especially during evening peak hours. Weather conditions are also
important factors to be used when analysing the pollution con-
centration due to their strong correlation and high temporal in-
fluence. Even-more, the data-driven investigation revealed that
data generated by the mobile sensing units when used outdoors
can be accurately used to predict future NO2 levels in urban areas.

Limitations: Besides the advantages and disadvantages of using
each of themobile units detailed in Section 3.1, themain limitations
for monitoring, investigating and evaluating air quality by using a
crowd-sensed initiative consists in the evaluation of the data ac-
curacy. While multiple sensing units are available for testing and
usage, one needs to verify the accuracy of the mobile stations for
calibration and validation purposes, under different traffic and
weather conditions. Despite important advantages of using low-
cost sensing units for measuring air pollution at a very granular
city scale, various questions about the use and large-scale uti-
lisation of such devices remain challenging and unanswered.
Important aspects which are currently under investigation relate to
the regulated production and marketing of such units, the use and
ownership of generated data, cost of maintenance and installation,
etc. A very important question concerns the electronic waste and
the impact on public health (Grant et al., 2013), especially as many
cities around the world are switching towards a sustainable and
ecological paradigm (Bayulken and Huisingh, 2015).

Future applications: To the best of our knowledge there isn't
currently any research approach trying to apply advanced machine
learning methods on mobile sensing-generated data for improving
citizen's health. There is a lack of solutions proposing both real-life
air quality monitoring at human level and data-driven prediction
approaches for situation awareness and real-time alert generation.
Data-driven modelling has a true potential for real-time operations
as it can automatically detect non-linear spatial relationships be-
tween sensing units and could easily aggregate results for regional
investigations as well.

A future real-life application of our study is to: a) extend the
usage of mobile sensing units to more citizens driving/walking/
cycling every day in the NGC eco-neighbourhood, b) improve the
data driven modelling for air quality prediction and incident hot-
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spot identification (this would require extensive machine learning
research investigations for addressing data sparsity and missing
features), and c) build a situation awareness module which would
learn from previous air pollution episodes and release pollution
alerts to citizens in real-time.

A future data analysis and experimental investigation awaits
for Metropolis research approval. The duration of the monitoring
could be also extended to longer periods which can be a true
challenge due to higher costs involving both human resources,
material acquisition, data processing and interpretation. Season-
ality could also be included in the analysis when more data would
become available, as in our previous studies (Mih�aiţ�a et al., 2016).

One of the benefits of predicting air pollution hot-spots is to
determine a change in the citizen driving behaviour which would
change not only their routes to avoid polluted areas, but also their
residential areas/recreational areas, etc. On the long-term this
would lead to a reconfiguration of cities based on human health
prioritisation.

The NGC project is further developing more studies on how to
better integrate accurate air quality information with traffic
congestion monitoring (Mih�aiţ�a et al., 2017), but also how to
involve citizens in an active crowd-source activity for raising
awareness around pollution and traffic behaviour. Offering the
correct monitoring tools will trigger more adapted urban actions
which will improve on the long-term the life of inhabitants in
such complex environments.
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Appendix A

Table A.4 in this Appendix section lists all the studies which
have been working towards the analysis and prediction of air
quality by either using fixed or mobile sensors, or by developing
new data-driven methods. They are compared based on the
technology used (what sensors, what data), their mobility, their
proximity near the breathing human level, and their innovative
data-driven approaches. The results have been generated by using
the following key words on major research platforms such as
Science Direct, Web of Science, Elsevier and Google Scholar:
“mobile sensors air quality pollution” and “air quality prediction”.
Please note that the list s not exhaustive and other research papers
meeting our research criteria might be available.
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main cities in China by using
the daily Air Quality Index.

of different levels of AQI
appeared in a two-years
data base for 2014e2015.

air quality of 31 main cities
in China by using daily AQI
data. There is no further
inclusion of other pollution
data sources from these
cities.

Borrego et al. (2018) This study presents part of
the results of the inter-
comparison campaign in
Aveiro and is intended to
estimate the uncertainty of
the measurements
according to the DQO of the
European Air Quality
Directive and to improve
their performance with the
aid of a computationally-
oriented methodology.

Study used micro-sensor
nodes which are low-cost
devices with considerable
application potential, offset
by important limitations
when applied to urban air
quality monitoring.

No No Both units utilised
Alphasense electrochemical
cell (ECC, model B4/BH) for
measuring NO, NO2, O3, CO,
SO2 and Total VOC.
Measurements of CO2
(SenseAir K30) and
particulate matter
(University of Hertfordshire
CAIR) were also undertaken.
The CAM10 and CAM11
boxes measured wind speed,
wind direction, temperature
and humidity, allowing
comparison of
meteorological variables and
source apportionment.

Two weeks in October 2014. Linear regression in addition
to the Feed-Forward Neural
Networks and Random
Forests algorithms were
employed, in an effort to
improve sensor
performance based solely on
sensor data and local
meteorological data from a
reference station.

Castell et al. (2018) This study installed 17 nodes
monitoring NO2 in the
playground kindergartens in
Oslo and one node in the top
of a reference air quality
monitoring station. The
results showed that indeed
low-cost sensors can
provide a good indication of
the air pollution levels,
being capable to reproduce
the trends during a high
pollution episode.

The sensor nodes were
located outdoors, on the
playground of the
kindergarten, at heights of
around 3m. Additionally, 6
sensor nodes were installed
in the streets in Oslo and 9
reference stations were used
from Oslo. A commercial
low-cost platform AQMesh
v3:5 was used for
monitoring results
(provided by Environmental
Instruments Ltd, UK).

No N/A Their battery driven
stationary platforms
measured four gaseous
components (CO, NO, NO2
and O3), particulate matter,
temperature, relative
humidity and atmospheric
pressure. The NO2 sensor
employed in the AQMesh
v3.5 is an electrochemical
sensor provided by
Alphasense (NO2-B42F) that
incorporates a filter to
eliminate cross-sensitivity
issues with O3.

From 1st-31st of January
2016.

The air quality modelling
was done using the EPISODE
dispersion model which is a
3-D Eulerian/Lagrangian
dispersion model that
provides urban and
regional-scale atmospheric
pollutant concentrations
such as NO2. The study
mentions an air quality
visualisation portal and
mapping using data fusion
techniques.

Ercilla-Montserrat et al.
(2018)

This study focuses on the
potential contamination of
heavy metals in hydroponic
lettuce crops due to
atmospheric pollution in
high-traffic areas.

To collect air samples, high-
volume sensors (MCV CAV-
A/mb) were used, working
at a volume of 30m3=h in 48-
h periods, using glass
microfibre filters.

No No The following metals were
analysed: Ni, As, Cd and Pb
on 4 sites: a peri-urban
integrated rooftop
greenhouse, a peri-urban
rooftop, an urban courtyard
and an urban rooftop.

1st test: 40 days starting
from 4th of April 2017; 2nd
test: 34 days starting from
22nd of June 2017.

Air and crop sample
analyses were carried out by
the Agency of Public Health
of Barcelona with ENAC
accreditation (UNE-EN ISO/
IEC 17025:2005).

Heimann et al. (2015) This study shows a purely
measurement-based
approach to extract
underlying pollution levels
(baselines) from air
measurements by exploiting
different relative
frequencies of local and
background pollution
variations.

The study measured the
carbon monoxide (CO) by
deploying a network of 45
low-cost electrochemical
sensors, in and around the
city of Cambridge, UK (out of
which only 32 were
successfully reporting
integral data sets).

No No CO concentration
measurements only were
obtained from the
Greenhouse Gas Laboratory
at Royal Holloway,
University of London
(RHUL), 75 miles south-west
of Cambridge in Egham,
Surrey. Every sensor node
was referenced to this one
station. To remove local
influences on the
measurements, a
meteorological filter was
applied.

2 months starting from 28th
of March 2010.

A novel and flexible method
has been developed to
determine sensor baselines,
i.e. underlying variation, of
measurements (that
represent non-local
emissions) which is suitable
for application to large data
sets.

Popoola et al. (2018) This work demonstrates a
technique for source

17 low cost portable air
quality devices developed at

No No (fixed on lampposts in
the airport).

CO, NO, CO2, VOCs (total),
Temperature, Relative

5 weeks starting from 4th of
October 2012.

They proposed an extension
of the street scale resolution

(continued on next page)
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Table A.4 (continued )

Ref. Study objective Sensors technology Mobile Near breathing level Parameters measured Period Data analysis

apportionment in complex
environments, in this case a
major international airport,
using a low-cost air quality
sensor network.

the Department of
Chemistry in the University
of Cambridge, UK, were
installed at the London
Heathrow airport
(Alphasense B4, Sensair K33,
Alphasense PID-AH, Pt1000,
Honeywell HIH4000, Gill
WindSonic University of
Hertfordshire).

Humidity, Wind Speed/
Direction, Size Specialised
Particulates.

ADMS-Urban dispersion
model for complex urban
environments with
additional capability for the
explicit modelling of aircraft
jet engine emissions as jet
sources.

SM et al. (2019) This paper deals with the
development of a smart
personal air quality
monitoring system (SPAMS)
for real time air quality
monitoring, in order to
measure the individual
exposure to air pollution.
Monitoring campaign was
designed for both pedestrian
exposure as well as
exposure while travelling in
bus. Sensors were set-up
near to the breathing level
throughout the monitoring
campaign to represent the
actual personal exposure to
the air pollutants.

Low-cost and light-weight
sensors (SPAMS) were used
for measuring CO (TGS
2442), NO2 (MiCS 2714), O3
(MiCS 2614), PM,
temperature and humidity.

Yes Yes CO, NO2, O3, PM,
Temperature, Humidity.
Field measurements were
performed by walking on
both footpaths and
travelling in the bus during
various times of a day
(morning, afternoon and
evening) and different days
in a week at selected
locations in Chennai city,
India.

Pedestrians walking
(random 2015); bus travel
(November 2015 to January
2016).

Analysis revealed that the
correlation between
temperature, RH and output
voltage of SPAM was linear.
The best fit line for each
parameter was used to get
sensor response function.
These response functions
were later used in the sensor
system to measure the real-
time gaseous pollutant
concentrations.

Ripoll et al. (2019) In this work, the
performance under field
conditions of two custom-
made types of ozone sensing
devices, based on metal-
oxide and electrochemical
sensors, was tested.

A large array of 132 metal-
oxide (Sensortech MICS
2614) and 11
electrochemical
(Alphasense) ozone sensors,
built into 44 sensing devices,
was co-located at reference
stations in Italy (4 stations)
and Spain (5).

No N/A O3 Between May and October
2017.

The individual sensor
datasets were calibrated
applying multi-linear
regression (MLR) analysis.

Pereira et al. (2018) This is a student project
which turned smart-phones
into dynamic sensor nodes
which send data to a
centralised platform.
Citizens play a significant
and empowering role
regarding healthcare
conditions.

The proposed solution has
an out-of-the-box central
platform available in the
cloud which gathers
available IoT sensor data
(ThingSpeak) and (2) an
online custom developed
central platform.

Yes N/A NO2, CO and O3. Not an exact set-up
experimentation.

N/A.

Hasenfratz et al. (2015) This work analyses one of
the largest spatially resolved
UFP data set publicly
available which contains
over 50 million air
measurements but also
proposed a mobile
measurement system. Node
mobility trades off temporal
resolution against spatial
resolution, enabling a high
spatial resolution across
large areas without the need

The mobile measurement
system consists of 10 sensor
nodes installed on top of
public transport vehicles,
which are equipped with a
semiconductor-based O3
sensor, electrochemical-
based CO and NO2 sensors,
and a compact device to
measure UFP
concentrations.
Additionally, the nodes
monitor radio-frequency

Yes No (3m high). NO2, CO and O3. 2 years starting from April
2012.

Based on these data, authors
develop land-use regression
(LUR) models to create
pollution maps with a high
spatial resolution of
100mx100m. Authors
compared the accuracy of
the derived models across
various time scales and
observed a rapid drop in
accuracy for maps with sub-
weekly temporal resolution.
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for a huge number of fixed
sensors.

electromagnetic fields,
temperature and humidity.

Minet et al. (2017) This study highlights the
challenges of short-term
mobile sampling campaigns
in terms of the resulting
exposure surfaces. A mobile
monitoring campaign was
conducted in 2015 in
Montreal; NO2 levels at 1395
road segments were
measured under repeated
visits.

The study used NO2 and O3
Aeroqual Series 500 portable
sensors, two types of GPS
Garmin Edge 800 as well as
MapMyRide, a smartphone
application.

Yes Yes (walk and bike). NO2 and O3 concentrations
were recorded by cyclists
and pedestrians. Hourly
temperature (T), relative
humidity (RH) and wind
speed from the Montreal
Pierre Elliott Trudeau
International Airport
weather station were
recorded and synchronized
with the other
measurements.

Between May and August
2015.

The authors applied a
statistical analysis and land-
use regression based on sub-
segments, categorized in
terms of the number of visits
per road segment. Authors
observed that LUR models
were highly sensitive to the
number of road segments
and to the number of visits
per road segment.

Suriano et al. (2015) This work is a technical
report on preliminary real-
world measurements by
low-cost gas sensor-systems
for air quality monitoring.

Authors used a sensor-
system AIRBOX in Bari Italy,
which is equipped with low-
cost electrochemical gas
sensors, optical particle
detectors, NDIR infra-red
sensors, photo-ionisation
detectors, and miniaturized
sensors for temperature and
relative humidity. Another
ENEA prototype of portable
sensor system which
connects to the smart-phone
by Bluetooth has been used
inside cars for air pollution
monitoring.

Yes-Airbox; No-Enea Yes NO2, CO, O3, CO2, SO2, VOCs,
PM1:0, PM2:5, PM10,
Temperature, humidity.

between 2015 and 07e21
and 2015-08-07.

No data-driven analysis was
provided, only a graphical
representation of data.

Devarakonda et al.
(2013)

This work presents a
vehicular-based mobile
approach for measuring
fine-grained air quality in
real-time. They proposed
two cost effective data
farming models: one that
can be deployed on public
transportation and the
second a personal sensing
device.

Authors used a) a Mobile
Sensing Box which can be
mounted on vehicles and
contains a micro-controller,
dust and carbon monoxide
sensors, GPS and a cellular
modem, and b) personal
sensing devices: a mobile air
quality sensor and a smart
phone to act as an interface
with the central repository
hosted on a cloud server.

Yes Yes They selected OXA and
CLIMA modules to measure
carbon monoxide, humidity,
temperature, ambient light
and barometric pressure.

A car tour for each
experiment.

Linear Regression in
PollutionMeasurements and
a heat-map of Carbon
Monoxide Concentrations
were generated.

Al-Ali et al. (2010) This work proposed an
online GPRS-Sensors Array
for air pollution monitoring
which consists of a Mobile
Data-Acquisition Unit
(Mobile-DAQ) and a fixed
Internet-Enabled Pollution
Monitoring Server.

The Mobile-DAQ unit
integrates a single-chip
microcontroller, air
pollution sensors array, a
General Packet Radio Service
Modem (GPRS-Modem), and
a Global Positioning System
Module (GPS-Module). The
Mobile-DAQ was mounted
on a University bus that was
driven around the campus of
the American University of
Sharjah (AUS) to collect
pollutant data.

Yes No CO, NO2, and SO2. The pollutant data was
collected for 12 h.

N/A
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�aiţ �a

et
al./

Journal
of

Cleaner
Production

221
(2019)

398
e
418

415
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Appendix B

In Table B5 we summarise the main air pollution sensors which
have been initially considered for this study, their characteristics,
advantages and disadvantages which correspond to our current
Table B.5
Air quality sensing unit comparison table.

Sensor Characteristics

Azimut

- Measures O3, NO2, noise and
temperature by using an
electrochemical detection
method (description provided in
Section 3.1).

Passive tubes

- Measures NO2 by passive
sampling (passive transfer of
pollutants by molecular diffusion
of ambient air to an adsorbent
specific to the targeted pollutant).

- Needs physical and fixed
installation at 2e3m from the
ground (see description in
Section 3.1).

- The result analysis is done in a
dedicated air quality laboratory.

l Smart Citizen Kit
- Measures NO2, O3, CO2, humidity,
luminosity and noise.

- Mobile unit with both electrical
recharge and integrated solar
panel which can be used for both
indoor and outdoor air pollution
monitoring.

Pollux'nz city

- The mobile unit contains PM10
particle pollution sensors,
temperature, sound and oxygen
sensors.

- There are two main components
to the system: a base station
which collects the data from the
array of sensors and a receiving
module which measures and
transmits the data (CKAB, 2017).

- Each sensor runs off of a battery,
but features a PV solar panel
which keeps the power source
topped off.

City Pulse
- This is a product of the Green
Watch Project (CityPulse, 2015)
which in 2009 used a prototype
equipped with two environ-
mental sensors (for measuring
ozone and noise), a GPS chip and
a Bluetooth chip. The device has
the shape of a watch that his
wearer takes with him to the city,
capturing and storing measure-
ments that are then published on
the network.

- The product measurements are
sent to both the mobile phone
and an open platform which can
be used for monitoring, analysis
and air quality modelling.

Dylos Station

- Indoor air quality monitoring for
fine particles (Coporation, 2017).

- Provides small and large particle
counts with a direct reading on
the unit.

- The Geocube station measures
NO2, O3, SO2, PM10, temperature,
purpose and needs for this study. While various comparative
studies could be further undertaken, our main objective was to
choose an appropriate mobile sensing unit which could be easily
adopted at larger scale but which could also provide accurate re-
sults when compared to highly efficient AQMs.
Advantages Disadvantages

- The mobile sensing unit can be
fixed on cars, bikes, held in
hand, etc.

- Provides real-time information.
- Offers access to a centralised
platform for data monitoring
and pollution alert.

- Azimut has a two days autonomy.
- Higher acquisition price than
passive tubes.

- Easy preparation, installation and
result investigation.

- Low cost unit (under 10 Euro per
analysis).

- Possibility to use the units at
larger scale.

- Does not require any electrical
charge.

- Does not provide any real-time
information.

- At least 1 or 2 weeks of waiting
period for obtaining complete
results.

- Fine-granular pollution peaks
which are hourly-based can not
be detected.

- Low energy consumption and
long autonomy.

- Affordable cost unit price
(averages around 200 Euro).

- The unit comes with an online
platform access for data-
collection and visualisation
(smartcitizen.me).

- Delivery time can be longer as
each unit is made on-order.

- Unit needs permanent Wi-Fi
connection for data transmission.
- Unit needs a special case for out-
door protection.

- Autonomous with a feature of
direct measures and lecture
from the online platform.

- It uses an Arduino to drive the
system, and an XBee radio for
communications. The base
station also uses an XBee radio to
poll the network, but it is not
driven by an Arduino.

- It does not measure the NO2
concentrations directly.

- It needs high maintenance and
configuration before the results
can be analysed.

- Autonomous, easy to carry and
well connected.

- Comes with a platform for data
collection and visualisation.

- No NO2 monitoring.
- The unit was hard to purchase
and test. The project has been
discontinued while waiting for
the second round of financing.

- Has an increased lower
sensitivity for detecting particles
down to 0.5 mm.

- The units have a higher range of
unit prices (199e425 Euro).

- No NO2 or noise monitoring.
- The unit cannot be used for
outdoor pollutant monitoring.

- It requires special software
installation for historical data
storage or visualisation.

- Outdoor station for monitoring
landslides which can

- The unit has a competitive price
which makes it less affordable



Table B.5 (continued )

Sensor Characteristics Advantages Disadvantages

Geocube

wind speed, wind direction and
noise (IGN, 2006).

- Contains three modules including
GPS, data and radio management.

communicate together in a global
network for transmitting data to a
central node connected to the
internet.

- The units are autonomous for
months and have also solar
panels integrated.

- They have an embedded alert
system for raising awareness.

for daily citizen purchase and
usage.

- It needs renewal after 500 cycles
of utilisation.

Footbot

- Indoor station unit for monitoring
particulate matter, temperature,
humidity and chemical pollutants
(Formaldehyde, Iso-Butane,
Toluene, Methane, Ammonia,
Benzene)

- It uses a ”video stream” approach
with affordable sensors for a
continuously monitoring. (US,
2018)

- The unit has embedded software
to send in real-time to the Could
the recalibration results via Wi-Fi
and rapidly process the data
measured.

- The data can be retrieved
remotely from the Cloud service,
and any updates or investigations
can be easily followed.

- The platform sends notifications
to the users which can also use
an API for data display.

- Price aligns with other mobile
units for air quality monitoring
(179 Euro).

- The unit is mainly dedicated for
indoor not outdoor air quality
monitoring due to its Wi-Fi con-
nectivity needs.

- No NO2 or noise monitoring.

Air.air!

- Portable indoor station unit for
monitoring particulate matter
PM2:5 and temperature which are
then sent to a smartphone app by
using a Low Energy Bluetooth
(BLE) (AirAir, 2014).

- It has a compact optical dust
sensor with a IRED infra-red-
emitting diode and a photo tran-
sistor, which are diagonally ar-
ranged in the device to measure
the reflected light off of the
airborne dust particles.

- The unit can be used both indoors
and outdoors and comes at an
attractive price starting from 59$.

- No NO2 or noise are monitored.
- No indication regarding the
autonomy is provided.

NetAtmo

- NetAtmo provides a package of
two stations for both indoor and
outdoor air quality monitoring
which register mainly
temperature, humidity,
atmospheric pressure, CO2 and
noise (NetAtmo, 2018).

- Results are being sent to a cloud
storage for later analysis and
smart-phone consultation.

- Long lasting autonomy for up to 2
years.

- NO2 is not monitored.
- Needs permanent Wi-Fi connec-
tion at no more than 100m.
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